Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
40
Lista 2021
Status:
Autorzy: Pečeliūnas Robertas, Žuraulis Vidas, Droździel Paweł, Pukalskas Saugirdas
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 4
Wolumen/Tom: 34
Strony: 619 - 630
Impact Factor: 1,0
Web of Science® Times Cited: 4
Scopus® Cytowania: 6
Bazy: Web of Science | Scopus | DOAJ | TRID | Directory of Open Access Journals | GEOBASE | Fluidex | Hrčak
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 12 lipca 2022
Abstrakty: angielski
The goal of the paper is to investigate the impact of tire tread depth on road accident risk and to develop an accident rate prediction model. The state of 4288 vehicle tires using tread depth gauge was inspected and processed statistically. The tread depth of the most worn tire from each vehicle was registered for further analysis. Based on the collected data, a statistical tire tread depth model for an insurance company vehicle fleet had been developed. The conformity of the gamma distribution to the data was verified upon applying the Pearson compatibility criterion. The paper provides the histograms of the frequencies of tire tread depths and the theoretical curves of the distribution density. The probability of the accident risk depending on the tire tread depth (adaptive risk index) was calculated applying the formed distributions and risk index dependence on the tire tread depth for the inspected vehicle fleet. According to the developed prediction model, an upgrade of the regulation for the minimum allowed tire tread depth by 2 mm (up to 3.6 mm) could reduce road accident risk (caused by poor adhesion to road surface) to 19.3% for the chosen vehicle fleet. Such models are useful for road safety experts, insurance companies and accident cost evaluation specialists by predicting expenses related to insurance events.