Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

MNiSW
200
Lista 2021
Status:
Autorzy: Nowakowska Monika, Łatka Leszek, Sokołowski Paweł, Szala Mirosław, Toma Filofteia-Laura, Walczak Mariusz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 508-509
Numer artykułu: 204462
Strony: 1 - 15
Web of Science® Times Cited: 3
Scopus® Cytowania: 4
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This work was supported by scholarship of DAAD Foundation (Deutscher Akademischer Austauschdienst) [grant no. 57378443]. The wear and erosion tests were financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education [grant no. 030/RID/2018/19]. The authors acknowledge the colleagues from Fraunhofer IWS: Oliver Kunze, Martin Köhler, and Stefan Scheitz for support during spraying of the coatings, Irina Shakhverdova and Beate Wolf for metallographic preparation of suspension sprayed samples.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 28 sierpnia 2022
Abstrakty: angielski
In this work, different Al2O3–TiO2 coatings, i.e., Al2O3, Al2O3-13 wt.% TiO2 and Al2O3-40 wt.% TiO2, produced by various thermal spray processes, namely: (i) atmospheric plasma spraying (APS), (ii) suspension plasma spraying (SPS), and (iii) suspension high-velocity oxy fuel spraying (S-HVOF), were investigated. For spray purposes, micrometer-sized powders and water-based suspensions of fine submicrometer-sized powders were used. The study aimed to investigate the influence of spray technology and spray feedstock characteristics, mainly chemical composition, i.e., TiO2 content, on the properties of the resulting coating. The sprayed coatings were characterised in terms of selected mechanical and wear properties, including fracture toughness, Vickers and instrumental hardness, Young's modulus, sliding wear resistance, and cavitation erosion resistance. The study showed that the sliding wear rate decreased with the increasing hardness, Young's modulus, and the content of the α-Al2O3 phase in the coating. The dominant wear mechanism was fatigue-induced brittle delamination, followed by the adhesive smearing of the wear debris. The dense microstructures characterised by a high hardness and an increased content of α-Al2O3 favored the resistance of coatings to cavitation erosion. Cavitation erosion was initiated at the microstructural discontinuities like pores or microcracks, resulting in damage by brittle failure with cracking and spallation, which ended up forming large cavitation craters.