Predictive Monitoring System for Autonomous Mobile Robots Battery Management Using the Industrial Internet of Things Technology
Artykuł w czasopiśmie
MNiSW
140
Lista 2021
Status: | |
Autorzy: | Krot Kamil, Iskierka Grzegorz, Poskart Bartosz, Gola Arkadiusz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2022 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 19 |
Wolumen/Tom: | 15 |
Numer artykułu: | 6561 |
Strony: | 1 - 16 |
Impact Factor: | 3,4 |
Web of Science® Times Cited: | 7 |
Scopus® Cytowania: | 11 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19). |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 21 września 2022 |
Abstrakty: | angielski |
The core of the research focuses on analyzing the discharge characteristic of a lithium NMC battery in an autonomous mobile robot, which can be used as a model to predict its future states depending on the amount of missions queued. In the presented practical example, an autonomous mobile robot is used for in-house transportation, where its missions are queued or delegated to other robots in the system depending on the robots’ predicted state of charge. The system with the implemented models has been tested in three scenarios, simulating real-life use cases, and has been examined in the context of the number of missions executed in total. The main finding of the research is that the battery discharge characteristic stays consistent regardless of the mission type or length, making it usable as a model for the predictive monitoring system, which allows for detection of obstruction of the default shortest paths for the programmed missions. The model is used to aid the maintenance department with information on any anomalies detected in the robot’s path or the behavior of the battery, making the transportation process safer and more efficient by alerting the employees to take action or delegate the excessive tasks to other robots. |