Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
This research project was financed in the framework of the Lublin University of Technology-Regional Excellence Initiative project, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).
The numerical analysis was conducted using the FEM ABAQUS software to establish the impact of various undercut anchor diameters on the rock breakout cone formation. The central focus of the investigations was on the rock breakout prism, which tends to be approximated to a cone or a quadrilateral pyramid, including its characteristic parameter, the angle of failure cone . Assuming that the embedment depth and the undercut anchor head angle were constant for the considered range of anchor head diameters, it remains unclear, however, precisely how the anchor head diameter affects the value of the failure cone angle, and thus the surface area of the full breakout prism. This conclusion stands in confirmation of our former considerations regarding the impact of the anchor head angle on the size of the breakout surface. Furthermore, it is supported by the results obtained from the mechanical model simulation of the anchor-rock system, where the anchor head angle and the effective embedment depth were determined as significant factors affecting the assumed rock breakout failure. The underlying aspect of the reported investigation was to evaluate the effectiveness of the non-conventional rock breakout technology performed with an undercut anchor, whose primary factors were both the pullout force and the assumed volume of the rock cone.