Machine Learning Analysis in the Diagnostics of the Dynamics of Ball Bearing with Different Radial Internal Clearance
Fragment książki (Rozdział monografii pokonferencyjnej)
MNiSW
20
Poziom I
Status: | |
Autorzy: | Ambrożkiewicz Bartłomiej, Syta Arkadiusz, Gassner Alexander, Georgiadis Anthimos, Litak Grzegorz, Meier Nicolas |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Strony: | 599 - 606 |
Scopus® Cytowania: | 0 |
Bazy: | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | 10th International Conference on Wave Mechanics and Vibrations |
Skrócona nazwa konferencji: | WMVC 2022 |
URL serii konferencji: | LINK |
Termin konferencji: | 4 lipca 2022 do 6 lipca 2022 |
Miasto konferencji: | Lizbona |
Państwo konferencji: | PORTUGALIA |
Publikacja OA: | NIE |
Abstrakty: | angielski |
Interpretation of acceleration time-series from rolling-element bearings is sometimes challenging if no prior knowledge of the system is available. The evaluation must adapt operational conditions or the actual value of operational parameters. In our analysis, we apply the machine learning methods and statistical indicators in the diagnosis of dynamical response in the self-aligning ball bearing with different radial internal clearance. Machine learning methods are applied for the quantification of the acceleration time-series with statistical indicators and their assignation to the specific state or clearance value. The results of the analysis allow recognizing the bearing’s condition and the clearance value based on experimental acceleration time-series. Additionally, confusion matrices are presented for showing the accuracy of proposed methods. The results of applied Machine Learning methods are on the level of around 80% in classifying the dynamical response to the specific radial clearance. The motivation of the research is to introduce it to on-site practice in the test rig. |