Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2021
Status:
Autorzy: Grabias-Blicharz Ewelina, Panek Rafał, Franus Małgorzata, Franus Wojciech
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 20
Wolumen/Tom: 15
Numer artykułu: 7174
Strony: 1 - 17
Impact Factor: 3,4
Web of Science® Times Cited: 12
Scopus® Cytowania: 15
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This research was funded within the TEAM-NET programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, grant number POIR.04.04.00-00-14E6/18-00, ‘’The fly ash as the precursors of functionalized materials for applications in environmental engineering, civil engineering and agriculture”.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 14 października 2022
Abstrakty: angielski
Mechanically treated fly ash (FA) was utilised to provide Al and Si atoms for zeolite synthesis. A combination of mechanical fly ash activation and classical hydrothermal synthesis led to favourable dissolution of activated fly ash and improved crystallization of zeolites. The milling activation step induced structural changes in FA to promote its reactivity in alkaline solution. The conversion of milled FA into zeolite materials was finally completed in the second step, during hydrothermal synthesis. The effect of such factors as crystallization temperature, milling time, and solution conditioning were systematically studied. The physicochemical properties characterising the obtained zeolite materials were determined via particle size distribution (PSD), nitrogen adsorption–desorption, X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), and powder X-ray diffraction (XRD). As a result, the best samples achieved a high degree of crystallinity and an extensive specific surface area of 292 m2/g, 87.4 m2/g, 41.9 m2/g for Na-X, Na-P1, and Na-A, respectively. The obtained results provide new and useful data for utilising fly ash resources and synthesising other practical zeolites through an innovative, mechanochemically assisted, and template-free approach.