Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network
Artykuł w czasopiśmie
MNiSW
100
Lista 2021
Status: | |
Autorzy: | Sun Lichao, Qin Hang, Przystupa Krzysztof, Majka Michał, Kochan Orest |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2022 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 20 |
Wolumen/Tom: | 22 |
Numer artykułu: | 7900 |
Strony: | 1 - 30 |
Impact Factor: | 3,9 |
Web of Science® Times Cited: | 13 |
Scopus® Cytowania: | 30 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | This work was supported by the 2021 Wuxi Science and Technology Innovation and Entrepreneurship Program. |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 17 października 2017 |
Abstrakty: | angielski |
Short-term load forecasting is viewed as one promising technology for demand prediction under the most critical inputs for the promising arrangement of power plant units. Thus, it is imperative to present new incentive methods to motivate such power system operations for electricity management. This paper proposes an approach for short-term electric load forecasting using long short-term memory networks and an improved sine cosine algorithm called MetaREC. First, using long short-term memory networks for a special kind of recurrent neural network, the dispatching commands have the characteristics of storing and transmitting both long-term and short-term memories. Next, four important parameters are determined using the sine cosine algorithm base on a logistic chaos operator and multilevel modulation factor to overcome the inaccuracy of long short-term memory networks prediction, in terms of the manual selection of parameter values. Moreover, the performance of the MetaREC method outperforms others with regard to convergence accuracy and convergence speed on a variety of test functions. Finally, our analysis is extended to the scenario of the MetaREC_long short-term memory with back propagation neural network, long short-term memory networks with default parameters, long short-term memory networks with the conventional sine-cosine algorithm, and long short-term memory networks with whale optimization for power load forecasting on a real electric load dataset. Simulation results demonstrate that the multiple forecasts with MetaREC_long short-term memory can effectively incentivize the high accuracy and stability for short-term power load forecasting. |