Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2023
Status:
Autorzy: Pingaro Marco, De Bellis Maria Laura, Reccia Emanuele, Trovalusci Patrizia, Sadowski Tomasz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: Pt 1
Wolumen/Tom: 304
Numer artykułu: 116265
Strony: 1 - 9
Impact Factor: 6,3
Web of Science® Times Cited: 8
Scopus® Cytowania: 8
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The results presented in this paper were obtained within the framework of research grant No. UMO/2016/21/B/ST8/01027 financed by the National Science Centre, Poland. This work is supported by Italian Ministry of University and Research (P.R.I.N. National Grant 2017 No. 2017HFPKZY (B88D19001130001); Sapienza Research Grants ‘‘Progetti Grandi’’ 2021 (B85F21008380001).
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
The modern polycrystalline composite materials have a complex internal structure consisting of different phases and interfaces with random distribution. Relevant examples are Al2O3/ZrO2, i.e. alumina/zirconia composites, widely used as structural materials with applications ranging from aerospace to bio-engineering. Depending on the phases content and on the grain size a broad range of material characteristics, among which elastic constants, can be obtained. With the aim of characterizing this class of materials, we exploit a numerical Fast Statistical Homogenization Procedure (FSHP) in order to both estimate the size of the Representative Volume Elements (RVE) and the effective elastic properties, assuming a linear elastic material behaviour. The 2-D analyses are performed considering a microstructure inspired by images of real portions of the Al2O3/ZrO2 composite obtained from a scanning electron microscope. The recent Virtual Element Method is used in combination with the FSHP approach to numerically solve boundary value problems. Different volume contents of phases are considered ranging from pure Alumina to pure zirconia. The results are useful to reliably characterize such materials in the elastic range taking into account the role played by random distribution of grains.