Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
20
Lista 2021
Status:
Autorzy: Ribeiro Mauricio Aparecido, Balthazar José Manoel, Lenz Wagner B., Felix Jorge L. P., Litak Grzegorz, Tusset Angelo Marcelo
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 12
Wolumen/Tom: 11
Numer artykułu: 667
Strony: 1 - 13
Impact Factor: 2,0
Web of Science® Times Cited: 3
Scopus® Cytowania: 4
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The authors acknowledge the support from the Brazilian agencies CAPES and the authors also acknowledge the financial support by the Brazilian Council for Scientific and Technological Development, CNPq, grants 306525/2015-1 and 307371/2017-4, respectively and support of the program of the Ministry of Science and Higher Education in project DIALOG 0019/DLG/2019/10 in the years 2019–2021.Poland DIALOG 0019/DLG/2019/10 in the years 2019–2021.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 24 listopada 2022
Abstrakty: angielski
In this work, we analyzed the nonlinear fractional dynamics in the equations of motion of a bar coupled to support under the effect of a potential described by two equally spaced magnetic poles. We also considered Bouc–Wen damping in the equations of motion. For external force vibrations, we considered an equation of a non-ideal motor based on the parameters that related the interaction between the oscillation and the excitation source. With such considerations, we explored the influence of the fractional derivative operator parameter on the average power generated by the device and the dynamic behavior to determine the chaotic and periodic regions. We use Bifurcation Diagrams, Test 0–1, Phase Portrait, and Poincaré Maps. As a conclusion, we established a set of parameters for the fractional differential equations to obtain higher average powers and the periodicity windows that corroborate the establishment of energetic orbits for energy harvesting.