Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2021
Status:
Autorzy: Biruk-Urban Katarzyna, Bere Paul, Józwik Jerzy, Leleń Michał
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 23
Wolumen/Tom: 15
Numer artykułu: 8597
Strony: 1 - 19
Impact Factor: 3,4
Web of Science® Times Cited: 4
Scopus® Cytowania: 8
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The project/research was financed in the framework of the project Lublin University of Technology—Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 2 grudnia 2022
Abstrakty: angielski
This paper reports the results of measurements of cutting forces and delamination in drilling of Glass-Fiber-Reinforced Polymer (GFRP) composites. Four different types of GFRP composites were tested, made by a different manufacturing method and had a different fiber type, weight fraction (wf) ratio, number of layers, but the same stacking sequence. GFRP samples were made using two technologies: a novel method based on the use of a specially designed pressing device and hand lay-up and vacuum bag technology process. The study was conducted with variable technological parameters: cutting speed vc and feed per tooth fz. The two-edge carbide diamond-coated drill produced by Seco Company was used in the experiments. Cutting-force components and delamination factor were measured in the experiments, and photos of the holes were taken to determine the delamination. In addition, modeling of cause-and-effect relationships between the technological drilling parameters vc and fz was simulated with the use of artificial neural network modeling. For all tested GFRP materials, an increase in fz led to an increase in the amplitude of cutting-force component Fz. The lowest values of the amplitude of cutting-force component Fz were obtained with the lowest tested feed per tooth value of 0.04 mm/tooth for all tested materials. It was observed that materials produced with the use of the specially designed pressing device were characterized by lower values of the cutting-force component Fz. It was also found that the delamination factor increased with an increase in fz for all tested GFRP materials. A comparison of the lowest and the highest values of fz revealed that the lowest delamination factor increase was archived by the B1 material and amounted to about 12.5%. The error margin of the obtained numerical modeling results does not exceed 15%, so it can be concluded that artificial neural networks are a suitable tool for modeling cutting force amplitudes as a function of vc and fz. The study has shown that the use of the special pressing device during the manufacturing of composite materials has a positive effect on delamination.