Parallel implementation of evolutionary partial differential equations by collocation optical-electronic schemes
Fragment książki (Rozdział monografii pokonferencyjnej)
MNiSW
20
Poziom I
Status: | |
Autorzy: | Bashkov Evgeniy A., Dmitrieva Olga A., Huskova Nadiia H., Vishnevskyi Svyatoslav, Kotyra Andrzej, Ormanbekova Ainur |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Strony: | 1 - 6 |
Scopus® Cytowania: | 0 |
Bazy: | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2022 |
Skrócona nazwa konferencji: | SPIE-IEEE-PSP 2022 |
URL serii konferencji: | LINK |
Termin konferencji: | 15 września 2022 do 17 września 2022 |
Miasto konferencji: | Lublin |
Państwo konferencji: | POLSKA |
Publikacja OA: | NIE |
Abstrakty: | angielski |
The problem of parallel solution of partial differential equations with the help of the method of lines that ensures the reduction of the initial problem to the Cauchy problem described by a system of ordinary differential equations is considered. As a basic method, collocated multi-step block difference schemes are proposed. Obtaining a numerical solution in this case becomes possible only with the use of high-performance computing, usually with parallel architecture. This problem becomes especially important in the implementation of mathematical models based on systems of partial differential equations when it comes to the need for discretization of the solution search area, which can be significantly complicated by the geometric configuration of the boundaries. Solution of systems of this order cannot be obtained without involving multiprocessor computers. But by simply increasing the processing power, this problem cannot be solved. Only by combining the advantages of supercomputers and modern numerical simulation methods we can expect a significant improvement in the numerical solution of partial differential equations (PDEs). |