Numerical calculation of three-dimensional point spread function оf optical systems
Fragment książki (Rozdział monografii pokonferencyjnej)
MNiSW
20
Poziom I
Status: | |
Autorzy: | Borovytsky Volodymyr N., Tuzhanskyi Stanislav Ye., Bilichenko Victor V., Nykyforova Larysa E., Shakhina Iryna Yu., Kotyra Andrzej, Yeraliyeva Bakhyt |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Strony: | 1 - 5 |
Scopus® Cytowania: | 0 |
Bazy: | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2022 |
Skrócona nazwa konferencji: | SPIE-IEEE-PSP 2022 |
URL serii konferencji: | LINK |
Termin konferencji: | 15 września 2022 do 17 września 2022 |
Miasto konferencji: | Lublin |
Państwo konferencji: | POLSKA |
Publikacja OA: | NIE |
Abstrakty: | angielski |
The paper presents the mathematical apparatus for precise calculation of the three-dimensional point spread function (3D PSF) of optical systems. The method is based on the Huygens-Fresnel principle: a spherical wave on the threedimensional surface of the exit pupil is considered as result of the superposition of elementary secondary point radiation sources. These point sources emit coherent electromagnetic waves with a spherical wave front. They form a certain distribution of generalized complex amplitudes in three-dimensional space near the focus point. This distribution is used to calculate the intensity distribution in the focus area of the optical system, which is the PSF. The advantage of the proposed technique is direct calculation of the 3D PSF with taking into account wave aberrations and without usage of Fresnel or Fraunhofer approximations. In case of small aperture optical systems the proposed technique coincides with classical theory that specifies the link between a pupil function and PSF via Fourier transform. The differences between precise and approximated techniques for 3D PSF calculation are also discussed. |