Prediction of the Compressive Strength of Environmentally Friendly Concrete Using Artificial Neural Network
Artykuł w czasopiśmie
MNiSW
70
Lista 2021
Status: | |
Autorzy: | Kulisz Monika, Kujawska Justyna, Aubakirova Zulfiya, Zhairbaeva Gulnaz, Warowny Tomasz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2022 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 4 |
Wolumen/Tom: | 18 |
Strony: | 68 - 81 |
Scopus® Cytowania: | 3 |
Bazy: | Scopus | BazTech | (CEEAS) | CNKI Scholar DOAJ (Directory of Open Access Journals) | EBSCO | ERIH PLUS | Index Copernicus | J-Gate | Google Scholar | Scope Database | TEMA. |
Efekt badań statutowych | NIE |
Finansowanie: | This research was funded by the Polish Ministry of Science and Higher Education, grant numbers: FD-20/IM-5/061/2022 and FD-NZ-062/2022. |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Otwarte czasopismo |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 3 grudnia 2022 |
Abstrakty: | angielski |
The paper evaluated the possibility of using artificial neural network models for predicting the compressive strength (Fc) of concretes with the addition of recycled concrete aggregate (RCA). The artificial neural network (ANN) approaches were used for three variable processes modeling (cement content in the range of 250 to 400 kg/m3, percentage of recycled concrete aggregate from 25% to 100% and the ratios of water contents 0.45 to 0.6). The results indicate that the compressive strength of recycled concrete at 3, 7 and 28 days is strongly influenced by the cement content, %RCA and the ratios of water contents. It is found that the compressive strength at 3, 7 and 28 days decreases when increasing RCA from 25% to 100%. The obtained MLP and RBF networks are characterized by satisfactory capacity for prediction of the compressive strength of concretes with recycled concrete aggregate (RCA) addition. The results in statistical terms; correlation coefficient (R) reveals that the both ANN approaches are powerful tools for the prediction of the compressive strength. |