Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
70
Lista 2021
Status:
Autorzy: Łukasik Edyta, Łabuć Emilia
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 4
Wolumen/Tom: 18
Strony: 53 - 67
Scopus® Cytowania: 0
Bazy: Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 3 grudnia 2022
Abstrakty: angielski
In today’s highly computerized world, data compression is a key issue to minimize the costs associated with data storage and transfer. In 2019, more than 70% of the data sent over the network were images. This paper analyses the feasibility of using the SVD algorithm in image compression and shows that it improves the efficiency of JPEG and JPEG2000 compression. Image matrices were decomposed using the SVD algorithm before compression. It has also been shown that as the image dimensions increase, the fraction of eigenvalues that must be used to reconstruct the image in good quality decreases. The study was carried out on a large and diverse set of images, more than 2500 images were examined. The results were analyzed based on criteria typical for the evaluation of numerical algorithms operating on matrices and image compression: compression ratio, size of compressed file, MSE, number of bad pixels, complexity, numerical stability, easiness of implementation.