Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2023
Status:
Autorzy: Srokosz Michał, Bobyk Andrzej , Księżopolski Bogdan, Wydra Michał
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 1
Wolumen/Tom: 12
Numer artykułu: 251
Strony: 1 - 17
Impact Factor: 2,6
Web of Science® Times Cited: 4
Scopus® Cytowania: 6
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 3 grudnia 2023
Abstrakty: angielski
The number of fraud occurrences in electronic banking is rising each year. Experts in the field of cybercrime are continuously monitoring and verifying network infrastructure and transaction systems. Dedicated threat response teams (CSIRTs) are used by organizations to ensure security and stop cyber attacks. Financial institutions are well aware of this and have increased funding for CSIRTs and antifraud software. If the company has a rule-based antifraud system, the CSIRT can examine fraud cases and create rules to counter the threat. If not, they can attempt to analyze Internet traffic down to the packet level and look for anomalies before adding network rules to proxy or firewall servers to mitigate the threat. However, this does not always solve the issues, because transactions occasionally receive a “gray” rating. Nevertheless, the bank is unable to approve every gray transaction because the number of call center employees is insufficient to make this possible. In this study, we designed a machine-learning-based rating system that provides early warnings against financial fraud. We present the system architecture together with the new ML- based scoring extension, which examines customer logins from the banking transaction system. The suggested method enhances the organization’s rule-based fraud prevention system. Because they occur immediately after the client identification and authorization process, the system can quickly identify gray operations. The suggested method reduces the amount of successful fraud and improves call center queue administration.