Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2023
Status:
Autorzy: Rajczakowska Magdalena, Szeląg Maciej, Habermehl-Cwirzen Karin, Hedlund Hans, Cwirzen Andrzej
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 3
Wolumen/Tom: 16
Numer artykułu: 1273
Strony: 1 - 29
Impact Factor: 3,1
Web of Science® Times Cited: 13
Scopus® Cytowania: 13
Bazy: Web of Science | Scopus | ADS (Astrophysics Data System) BibCnrs CABI CAPlus / SciFinder CNKI DOAJ EBSCO Ei Compendex Gale Inspec PubMed PMC OpenAIRE OSTI (U.S. Department of Energy) PATENTSCOPE ProQuest SafetyLit SCIE
Efekt badań statutowych NIE
Finansowanie: This project has received support from the Swedish Transport Administration (Trafikverket), Skanska AB, and the Development Fund of the Swedish Construction Industry (SBUF).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 2 lutego 2023
Abstrakty: angielski
Developing accurate and interpretable models to forecast concrete’s self-healing behavior is of interest to material engineers, scientists, and civil engineering contractors. Machine learning (ML) and artificial intelligence are powerful tools that allow constructing high-precision predictions, yet often considered “black box” methods due to their complexity. Those approaches are commonly used for the modeling of mechanical properties of concrete with exceptional accuracy; however, there are few studies dealing with the application of ML for the self-healing of cementitious materials. This paper proposes a pioneering study on the utilization of ML for predicting post-fire self-healing of concrete. A large database is constructed based on the literature studies. Twelve input variables are analyzed: w/c, age of concrete, amount of cement, fine aggregate, coarse aggregate, peak loading temperature, duration of peak loading temperature, cooling regime, duration of cooling, curing regime, duration of curing, and specimen volume. The output of the model is the compressive strength recovery, being one of the self-healing efficiency indicators. Four ML methods are optimized and compared based on their performance error: Support Vector Machines (SVM), Regression Trees (RT), Artificial Neural Networks (ANN), and Ensemble of Regression Trees (ET). Monte Carlo analysis is conducted to verify the stability of the selected model. All ML approaches demonstrate satisfying precision, twice as good as linear regression. The ET model is found to be the most optimal with the highest prediction accuracy and sufficient robustness. Model interpretation is performed using Partial Dependence Plots and Individual Conditional Expectation Plots. Temperature, curing regime, and amounts of aggregates are identified as the most significant predictors.