The Influence Assessment of Artifact Subspace Reconstruction on the EEG Signal Characteristics
Artykuł w czasopiśmie
MNiSW
100
Lista 2023
Status: | |
Autorzy: | Plechawska-Wójcik Małgorzata, Augustynowicz Paweł, Kaczorowska Monika, Zabielska-Mendyk Emilia, Zapała Dariusz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 3 |
Wolumen/Tom: | 13 |
Numer artykułu: | 1605 |
Strony: | 1 - 14 |
Impact Factor: | 2,5 |
Web of Science® Times Cited: | 7 |
Scopus® Cytowania: | 7 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 27 stycznia 2023 |
Abstrakty: | angielski |
EEG signals may be affected by physiological and non-physiological artifacts hindering the analysis of brain activity. Blind source separation methods such as independent component analysis (ICA) are effective ways of improving signal quality by removing components representing non-brain activity. However, most ICA-based artifact removal strategies have limitations, such as individual differences in visual assessment of components. These limitations might be reduced by introducing automatic selection methods for ICA components. On the other hand, new fully automatic artifact removal methods are developed. One of such method is artifact subspace reconstruction (ASR). ASR is a component-based approach, which can be used automatically and with small calculation requirements. The ASR was originally designed to be run not instead of, but in addition to ICA. We compared two automatic signal quality correction approaches: the approach based only on ICA method and the approach where ASR was applied additionally to ICA and run before the ICA. The case study was based on the analysis of data collected from 10 subjects performing four popular experimental paradigms, including resting-state, visual stimulation and oddball task. Statistical analysis of the signal-to-noise ratio showed a significant difference, but not between ICA and ASR followed by ICA. The results show that both methods provided a signal of similar quality, but they were characterised by different usabilities. |