Numerical solution of two-dimensional nonlinear Riesz space-fractional reaction–advection–diffusion equation using fast compact implicit integration factor method
Artykuł w czasopiśmie
MNiSW
70
Lista 2023
Status: | |
Autorzy: | Biswas Chetna, Das Subir, Singh Anup, Sadowski Tomasz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 9 |
Wolumen/Tom: | 103 |
Numer artykułu: | e202200334 |
Strony: | 1 - 15 |
Impact Factor: | 2,3 |
Web of Science® Times Cited: | 2 |
Scopus® Cytowania: | 2 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | Board of Research in Nuclear Sciences,Grant/Award Number:58/14/07/2022-BRNS/37041 |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 6 marca 2023 |
Abstrakty: | angielski |
In the present article, a finite domain is considered to find the numerical solution of a two-dimensional nonlinear fractional-order partial differential equation (FPDE) with Riesz space fractional derivative (RSFD). Here two types of FPDE–RSFD are considered, the first one is a two-dimensional nonlinear Riesz space-fractional reaction–diffusion equation (RSFRDE) and the second one is a two-dimensional nonlinear Riesz space-fractional reaction-advection-diffusion equation (RSFRADE). SFRDE is obtained by simply replacing second-order derivative term of the standard nonlinear diffusion equation by the Riesz fractional derivative of order whereas the SFRADE is obtained by replacing the first-order and second-order space derivatives from the standard order advection–dispersion equation with the Riesz fractional derivatives of order . A numerical method is provided to deal with the RSFD with the weighted and shifted Grünwald–Letnikov (WSGD) approximations, for the spatial discretization. The SFRDE and SFRADE are transformed into a system of ordinary differential equations (ODEs), which have been solved using a fast compact implicit integration factor (FcIIF) with nonuniform time meshes. Finally, the demonstration of the validation and effectiveness of the numerical method is given by considering some existing models. |