Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2023
Status:
Autorzy: Kazimierczak Paulina, Wessely-Szponder Joanna, Pałka Krzysztof, Barylyak Adriana, Zinchenko Viktor, Przekora Agata
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 6
Wolumen/Tom: 24
Numer artykułu: 5576
Strony: 1 - 18
Web of Science® Times Cited: 7
Scopus® Cytowania: 7
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This research was funded by the National Science Centre (NCN) in Poland, within OPUS 16, grant no. UMO-2018/31/B/ST8/00945. The research was also partially supported by the Ministry of Education and Science in Poland, within the statutory activity of the Medical University of Lublin (DS630/2022 project). The article processing charge was financed by the GI/6 project of the Medical University of Lublin (Poland). The Micro-CT analysis and compression tests, performed by Krzysztof Palka, were supported by the project of Lublin University of Technology, Poland (grant FD-20/IM-5/078).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 14 marca 2023
Abstrakty: angielski
Hydroxyapatite (HAP) is the most common calcium phosphate ceramic that is used in biomedical applications, e.g., as an inorganic component of bone scaffolds. Nevertheless, fluorapatite (FAP) has gained great attention in the area of bone tissue engineering in recent times. The aim of this study was a comprehensive comparative evaluation of the biomedical potential of fabricated HAP- and FAP-based bone scaffolds, to assess which bioceramic is better for regenerative medicine applications. It was demonstrated that both biomaterials had a macroporous microstructure, with interconnected porosity, and were prone to slow and gradual degradation in a physiological environment and in acidified conditions mimicking the osteoclast-mediated bone resorption process. Surprisingly, FAP-based biomaterial revealed a significantly higher degree of biodegradation than biomaterial containing HAP, which indicated its higher bioabsorbability. Importantly, the biomaterials showed a similar level of biocompatibility and osteoconductivity regardless of the bioceramic type. Both scaffolds had the ability to induce apatite formation on their surfaces, proving their bioactive property, that is crucial for good implant osseointegration. In turn, performed biological experiments showed that tested bone scaffolds were non-toxic and their surfaces promoted cell proliferation and osteogenic differentiation. Moreover, the biomaterials did not exert a stimulatory effect on immune cells, since they did not generate excessive amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS), indicating a low risk of inflammatory response after implantation. In conclusion, based on the obtained results, both FAP- and HAP-based scaffolds have an appropriate microstructure and high biocompatibility, being promising biomaterials for bone regeneration applications. However, FAP-based biomaterial has higher bioabsorbability than the HAP-based scaffold, which is a very important property from the clinical point of view, because it enables a progressive replacement of the bone scaffold with newly formed bone tissue.