Water absorption prediction of nanopolymer hydrophobized concrete surface using texture analysis and machine learning algorithms
Artykuł w czasopiśmie
MNiSW
140
Lista 2023
Status: | |
Autorzy: | Szafraniec Małgorzata, Omiotek Zbigniew, Barnat-Hunek Danuta |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Wolumen/Tom: | 375 |
Numer artykułu: | 130969 |
Strony: | 1 - 15 |
Impact Factor: | 7,4 |
Web of Science® Times Cited: | 1 |
Scopus® Cytowania: | 1 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | This work was financially supported by the Ministry of Science and Higher Education – Poland, within the grant numbers: FD-IL-068, FD-EE-315 and FD-IL-003. |
Materiał konferencyjny: | NIE |
Publikacja OA: | NIE |
Abstrakty: | angielski |
The work concerned the study of surface hydrophobized concrete's physical and mechanical properties. An aqueous emulsion based on nano-silicates (A1) and an oligomeric propylsilicate/silicate (A2) concentrate in three dilution states (100%, 70%, and 50%) were used as surface modification agents. The scanning electron microscopy (SEM) images determined three classes of water absorption (WA). A predictive modeling process was performed to automatically identify 1 of the 3 water absorption classes. For the best model, a classification accuracy of 96% was obtained. After 14 days of testing, the hydrophobization efficiency was still high, over 54% for A1 and 45% for A2 for 100% concentration. The samples achieved the best frost resistance with agents A1 and A2 in a 70% concentration. Experimental studies have confirmed the close relationship between concretes' water absorptivity and their surfaces' SEM images. No similar studies of this type are known. |