Water absorption prediction of nanopolymer hydrophobized concrete surface using texture analysis and machine learning algorithms
Artykuł w czasopiśmie
MNiSW
140
Lista 2023
| Status: | |
| Autorzy: | Szafraniec Małgorzata, Omiotek Zbigniew, Barnat-Hunek Danuta |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2023 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Wolumen/Tom: | 375 |
| Numer artykułu: | 130969 |
| Strony: | 1 - 15 |
| Impact Factor: | 7,4 |
| Web of Science® Times Cited: | 3 |
| Scopus® Cytowania: | 4 |
| Bazy: | Web of Science | Scopus |
| Efekt badań statutowych | NIE |
| Finansowanie: | This work was financially supported by the Ministry of Science and Higher Education – Poland, within the grant numbers: FD-IL-068, FD-EE-315 and FD-IL-003. |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | NIE |
| Abstrakty: | angielski |
| The work concerned the study of surface hydrophobized concrete's physical and mechanical properties. An aqueous emulsion based on nano-silicates (A1) and an oligomeric propylsilicate/silicate (A2) concentrate in three dilution states (100%, 70%, and 50%) were used as surface modification agents. The scanning electron microscopy (SEM) images determined three classes of water absorption (WA). A predictive modeling process was performed to automatically identify 1 of the 3 water absorption classes. For the best model, a classification accuracy of 96% was obtained. After 14 days of testing, the hydrophobization efficiency was still high, over 54% for A1 and 45% for A2 for 100% concentration. The samples achieved the best frost resistance with agents A1 and A2 in a 70% concentration. Experimental studies have confirmed the close relationship between concretes' water absorptivity and their surfaces' SEM images. No similar studies of this type are known. |