Analysis of Vibration, Deflection Angle and Surface Roughness in Water-Jet Cutting of AZ91D Magnesium Alloy and Simulation of Selected Surface Roughness Parameters Using ANN
Artykuł w czasopiśmie
MNiSW
140
Lista 2023
Status: | |
Autorzy: | Biruk-Urban Katarzyna, Zagórski Ireneusz, Kulisz Monika, Leleń Michał |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 9 |
Wolumen/Tom: | 16 |
Numer artykułu: | 3384 |
Strony: | 1 - 18 |
Impact Factor: | 3,1 |
Web of Science® Times Cited: | 6 |
Scopus® Cytowania: | 9 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | This research was funded by Lublin University of Technology with grant numbers M/KPIP/FN-32 and FD-20/IM-5/061/2022. |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 26 kwietnia 2023 |
Abstrakty: | angielski |
The use of magnesium alloys in various industries and commerce is increasing due to their properties such as high strength and casting properties, high vibration damping capability, good shielding of electromagnetic radiation and high machinability. Conventional machining methods can, however, pose a risk of ignition. AWJM is a safe alternative to conventional machining, but the deflection and vibration of the water jet can affect surface quality. Therefore, the aim of this study was to investigate the effects of selected AWJM parameters on the surface quality and vibration of machined magnesium alloys. Jet deflection angle, surface roughness parameters and vibration during AWJM were investigated. The findings showed that higher skewness occurred at a lower abrasive flow rate, while higher average values of the Sku roughness parameter were obtained at ma = 8 g/s in the range of 60–140 mm/min. It was also observed that higher vibration values occurred at ma = 8 g/s. The input parameters for creating an artificial neural network (ANN) model used in this study were the cutting speed vf and the mass flow rate ma. The results of this study provided valuable insights into ways of ensuring a safe and efficient machining environment for magnesium alloys. The use of ANN modeling for predicting the vibration and surface roughness of AZ91D magnesium alloy after water-jet cutting could be an effective tool for optimizing AWJM parameters. |