Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
The research leading to these results has received funding from the commissioned task
entitled “VIA CARPATIA Universities of Technology Network named after the President of the
Republic of Poland Lech Kaczyński”, contract no. MEiN/2022/DPI/2577, action entitled “In the
neighborhood—inter-university research internships and study visits”.
The proposed changes to the legislation on diesel cars require intensification of work on the possibilities of reducing emissions of harmful substances into the atmosphere by these vehicles. The subject of experimental research included in the manuscript was the Skoda Octavia with a 1.9 TDI (turbocharged direct injection) compression ignition engine (type 1Z). Light absorption measurements of smokiness of the exhaust gases emitted after combustion of various biofuels (conventional diesel, pure hydrotreated vegetable oil, hydrotreated vegetable oil, biobutanol) and their blends with fossil diesel fuel were studied. The measured light absorption coefficient is the reciprocal of the thickness of the layer, after passing through which the light has a ten times lower intensity. Its unit is the reciprocal of the meter (1/m or m−1). The results obtained by means of a standard smokiness meter indicate that the use of biofuels or their blends, in general, reduces smoke formation.