Improved Prediction of the Higher Heating Value of Biomass Using an Artificial Neural Network Model Based on the Selection of Input Parameters
Artykuł w czasopiśmie
MNiSW
140
Lista 2023
Status: | |
Autorzy: | Kujawska Justyna, Kulisz Monika, Oleszczuk Piotr, Cel Wojciech |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 10 |
Wolumen/Tom: | 16 |
Numer artykułu: | 4162 |
Strony: | 1 - 16 |
Impact Factor: | 3,0 |
Web of Science® Times Cited: | 3 |
Scopus® Cytowania: | 6 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | This research was funded by the Polish Ministry of Science and Higher Education, grant numbers: FD-NZ-020/2022, FD-20/IS-6/019, FD-NZ-030/2022 and FD-20/IS-6/003. |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 18 maja 2023 |
Abstrakty: | angielski |
Recently, biomass has become an increasingly widely used energy resource. The problem with the use of biomass is its variable composition. The most important property that determines the energy content and thus the performance of fuels such as biomass is the heating value (HHV). This paper focuses on selecting the optimal number of input variables using linear regression (LR) and the multivariate adaptive regression splines approach (MARS) to create an artificial neural network model for predicting the heating value of selected biomass. The MARS model selected the input data better than the LR model. The best modeling results were obtained for a network with three input neurons and nine neurons in the hidden layer. This was confirmed by a high correlation coefficient of 0.98. The obtained results show that artificial neural network (ANN) models are effective in predicting the calorific value of woody and field biomass, and can be considered a worthy simulation model for use in selecting biomass feedstocks and their blends for renewable fuel applications. |