Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2023
Status:
Autorzy: Tisov Oleksandr, Yurchuk Alina, Paszeczko Mychajło, Pohreliuk Iryna, Chocyk Dariusz, Myroslav Kindrachuk
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 11
Wolumen/Tom: 16
Numer artykułu: 3900
Strony: 1 - 17
Impact Factor: 3,1
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The research was jointly funded by Xi’an Jiaotong University (Project number 11304223010101) and Lublin University of Technology, within the framework of the Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19). There are no conflicts of interest between the authors and the institutions.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 23 maja 2023
Abstrakty: angielski
This paper studies the microstructure, phase composition and tribological response of BT22 bimodal titanium alloy samples, which were selectively laser-processed before nitriding. Laser power was selected to obtain a maximum temperature just a little above the α↔β transus point. This allows for the formation of a nano-fine cell-type microstructure. The average grain size of the nitrided layer obtained in this study was 300–400 nm, and 30–100 nm for some smaller cells. The width of the “microchannels” between some of them was 2–5 nm. This microstructure was detected on both the intact surface and the wear track. XRD tests proved the prevailing formation of Ti2N. The thickness of the nitride layer was 15–20 μm between the laser spots, and 50 μm below them, with a maximum surface hardness of 1190 HV0.01. Microstructure analyses revealed nitrogen diffusion along the grain boundaries. Tribological studies were performed using a PoD tribometer in dry sliding conditions, with a counterpart fabricated from untreated titanium alloy BT22. The comparative wear test indicates the superiority of the laser+nitrided alloy over the one that was only nitrided: the weight loss was 28% lower, with a 16% decrease in the coefficient of friction. The predominant wear mechanism of the nitrided sample was determined to be micro-abrasive wear accompanied by delamination, while that of the laser+nitrided sample was micro-abrasive wear. The cellular microstructure of the nitrided layer obtained after the combined laser-thermochemical processing helps to withstand substrate deformations and provide better wear-resistance.