Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2023
Status:
Autorzy: Borucka Anna, Kozłowski Edward, Antosz Katarzyna, Parczewski Rafał
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 11
Wolumen/Tom: 13
Numer artykułu: 6721
Strony: 1 - 14
Impact Factor: 2,5
Web of Science® Times Cited: 10
Scopus® Cytowania: 11
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 31 maja 2023
Abstrakty: angielski
The process quality capability indicators Cp and Cpk are widely used to measure process capability. Traditional metric estimation methods require process data to be explicit and normally distributed. Often, the actual data obtained from the production process regarding the measurements of quality features are incomplete and do not have a normal distribution. This means that the use of traditional methods of estimating Cp and Cpk indicators may lead to erroneous results. Moreover, in the case of qualitative characteristics where a two-sided tolerance limit is specified, it should not be very difficult. The problem arises when the data do not meet the postulate of normality distribution and/or a one-sided tolerance limit has been defined for the process. Therefore, the purpose of this article was to present the possibility of using the Six Sigma method in relation to numerical data that do not meet the postulate of normality of distribution. The paper proposes a power transformation method using multiple-criteria decision analysis (MCDA) for the asymmetry coefficient and kurtosis coefficient. The task was to minimize the Jarque–Bera statistic, which we used to test the normality of the distribution. An appropriate methodology was developed for this purpose and presented on an empirical example. In addition, for the variable after transformation, for which the one-sided tolerance limit was determined, selected process quality evaluation indices were calculated.