Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
20
Poziom I
Status:
Autorzy: Mazurkiewicz Dariusz, Ren Yi, Qian Cheng
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Strony: 559 - 580
Scopus® Cytowania: 2
Bazy: Scopus
Efekt badań statutowych NIE
Finansowanie: This work was supported by the individual research grant FD-20/IM-5/072/2022, of the scientific discipline Mechanical Engineering, Lublin University of Technology, Poland. This work was prepared within the project PM/SP/0063/2021/1 titled “Innovative measurement technologies supported by digital data processing algorithms for improved processes and products”, financed by the Ministry of Education and Science (Poland) as a part of the Polish Metrology Programme. This work was partially prepared under the project “Digital Twin Based Fault Prediction and Maintenance Method for Intelligent Instruments”—Grant No. G2021177009L under the framework of the “High-end International Visiting Professor Project” through long distance collaboration.
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
Prognostics and Health Management (PHM) supports users with an integrated view of the health of any technical asset, and it consists of many different tasks based on data that are usually obtained from multisensory systems. The effective implementation of PHM does not, however, end with predicting remaining useful life (RUL). PHM has untapped potential to go beyond failure prediction and support of optimal maintenance actions and scheduling, along with logistics decisions. Both data captured by reliability systems and standard production data are generally used separately for different purposes. For higher effectiveness, these data have to be integrated in a combined approach. This can be achieved with the help of Digital Twin analytics that can support effective data use for parallel or combined purposes, such as classifying states, predicting failures or enhancing production efficiency. Furthermore, these seemingly independent concepts can be integrated into the same data collection approach. Previous studies have demonstrated that the afore-mentioned combined solution to classification and prediction challenges is yet only a standard approach to PHM, one that makes it possible to predict RUL, degradation track and optimal time to intervention. Consequently, a new solution is proposed, one that takes into consideration the possibility of intelligent and sustainable production in combination with online predictive maintenance and continuous process optimisation. The prediction of degradation and remaining useful life with the use of multisource data integration facilitates production process optimisation to gain additional use time. This, in turn, brings about incomparably greater financial effects than is the case with the traditional approach to PHM.