Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
70
Lista 2023
Status:
Autorzy: Zaprawa Paweł
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 4
Wolumen/Tom: 46
Numer artykułu: 144
Strony: 1 - 14
Impact Factor: 1,0
Web of Science® Times Cited: 2
Scopus® Cytowania: 2
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 17 czerwca 2023
Abstrakty: angielski
The relation between a considered family of analytic functions and the class P of functions with a positive real part is one of the main tools used in solving various extremal problems, among others coefficient problems. Another approach can be useful in solving such tasks. This approach is to exploit the correspondence between a considered family and the family B0 of bounded analytic functions ω such that ω(0)=0. Such functions appear in the well-known Schwarz lemma, so they are called Schwarz functions. In the literature, there are numerous coefficient functionals discussed for functions in P. On the other hand, relative functionals for functions in B0 are not so commonly studied. Consequently, we do not know so much about coefficient inequalities for Schwarz functions. We shall fill the gap to some extent considering two types of functionals. The first one is a Zalcman-type functional cn−ckcn−k; the other one is the Hankel determinant cn−1cn+1−cn2. For these functionals, bounds with respect to a fixed first coefficient c1 (or a few initial coefficients) are obtained. Some generalizations of these functionals are also given. All results are sharp.