Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2023
Status:
Autorzy: Xie Fang, Zhang Yiming, Przystupa Krzysztof, Kochan Orest
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 13
Wolumen/Tom: 12
Numer artykułu: 2935
Strony: 1 - 14
Impact Factor: 2,6
Web of Science® Times Cited: 2
Scopus® Cytowania: 4
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This work is supported by the Key Project of Hubei Education Department under Grant No. D20201402; the Natural Science Foundation of Hubei Province under Grant No. 2020CFB807; the Science Start-up Foundation for High-level Talents of HBUT under Grant No. 430100391
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 4 lipca 2023
Abstrakty: angielski
Web API is an efficient way for Service-based Software (SBS) development, and mashup is a key technology which merges several web services to deal with the increasing complexity of software requirements and expedite the service-based system development. The efficient service recommendation method is vital for the software development. However, the existing methods often suffer from data sparsity or cold start issues, which should lead to bad effects. Currently, this paper starts with SBS development, and proposes a service recommendation method based on knowledge graph embedding and collaborative filtering (CF) technology. In our model, we first construct a refined knowledge graph using SBS-service co-invocation record and SBS and service related information to mine the potential semantics relationship between SBS and service. Then, we learn the SBS and service entities in the knowledge graph. These heterogeneous entities (SBS and service, etc.) are embedded into the low-dimensional space through the representation learning algorithms of Word2vec and TransR, and the distances between SBS and service vectors are calculated. The input of recommendation model is SBS requirement (target SBS), the similarities functional SBS set is extracted from knowledge graph, which can relieve the cold start problem. Meanwhile, the recommendation model uses CF to recommend service to target SBS. Finally, this paper verifies the effectiveness of method on the real-word dataset. Compared with the several state-of-the-art methods, our method has the best service hit rate and ranking quality.