Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2023
Status:
Autorzy: Ciecieląg Krzysztof
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 13
Wolumen/Tom: 16
Numer artykułu: 4825
Strony: 1 - 14
Web of Science® Times Cited: 1
Scopus® Cytowania: 1
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The activities of the Polish Metrological Union are financed from the funds of the Ministry of Education and Science as part of a targeted subsidy for the implementation of the task titled “Establishment and Coordination of the activities of the Polish Metrological Union (PMU)” under contract No. MEiN/2021/DPI/179. This research was partially supported by the Mechanical Engineering Discipline Fund of Lublin University of Technology (Grant No. FD-20/IM-5/016).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 4 lipca 2023
Abstrakty: angielski
The milling of polymer composites is a process that ensures dimensional and shape accuracy and appropriate surface quality. The shaping of thin-walled elements is a challenge owing to their deformation. This article presents the results of milling polymer composites made of glass and carbon fibers saturated with epoxy resin. The milling of each material was conducted using different tools (tools with polycrystalline diamond inserts, physically coated carbide inserts with titanium nitride and uncoated carbide inserts) to show differences in feed force and deformation after the machining of individual thin-walled samples. In addition, the study used recurrence analysis to determine the most appropriate quantifications sensitive to changes occurring in milling different materials with the use of different tools. The study showed that the highest forces occurred in milling thin-walled carbon-fiber-reinforced plastics using uncoated tools and the highest feeds per revolution and cutting speeds. The use of a high feed per revolution (0.8 mm/rev) in carbon-fiber-reinforced plastics machining by uncoated tools resulted in a maximum feed force of 1185 N. A cutting speed of 400 m/min resulted in a force of 754 N. The largest permanent deformation occurred in the milling of glass-fiber-reinforced composite samples with uncoated tools. The permanent deformation value of this material was 0.88 mm. Low feed per revolution (0.1 mm/rev) resulted in permanent deformations of less than 0.30 mm for both types of materials. A change in feed per revolution had the most significant effect on the deformations of thin-walled polymer composites. The analysis of forces and deformation made it possible to conclude that high feed per revolution were not recommended in composite milling. In addition to the analysis of machining thin-walled composites, the novelty of this study was also the use of recurrence methods. Recurrence methods were used to determine the most appropriate quantifications. Determinism, averaged diagonal length and entropy have been shown to be suitable quantifications for determining the type of machined material and the tools used.