Continuous Sign Language Recognition and Its Translation into Intonation-Colored Speech
Artykuł w czasopiśmie
MNiSW
100
Lista 2023
Status: | |
Autorzy: | Amangeldy Nurzada, Ukenova Aru, Bekmanova Gulmira, Razakhova Bibigul, Miłosz Marek, Kudubayeva Saule |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 14 |
Wolumen/Tom: | 23 |
Numer artykułu: | 6383 |
Strony: | 1 - 30 |
Impact Factor: | 3,4 |
Web of Science® Times Cited: | 3 |
Scopus® Cytowania: | 7 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant no. BR11765535). |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 13 lipca 2023 |
Abstrakty: | angielski |
This article is devoted to solving the problem of converting sign language into a consistent text with intonation markup for subsequent voice synthesis of sign phrases by speech with intonation. The paper proposes an improved method of continuous recognition of sign language, the results of which are transmitted to a natural language processor based on analyzers of morphology, syntax, and semantics of the Kazakh language, including morphological inflection and the construction of an intonation model of simple sentences. This approach has significant practical and social significance, as it can lead to the development of technologies that will help people with disabilities to communicate and improve their quality of life. As a result of the cross-validation of the model, we obtained an average test accuracy of 0.97 and an average val_accuracy of 0.90 for model evaluation. We also identified 20 sentence structures of the Kazakh language with their intonational model. |