Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2023
Status:
Autorzy: Xia Yingxiang, Shu Xuedao, Zhang Qingdong, Pater Zbigniew, Li Zixuan, Xu Haijie, Ma Zheng, Xu Cheng
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Elektroniczna
Język: angielski
Wolumen/Tom: 26
Strony: 1325 - 1340
Web of Science® Times Cited: 3
Scopus® Cytowania: 2
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This study was funded by the National Natural Science Foundation of China (No. 51975301, No. 52205403), the Natural Science Foundation of Zhejiang, China (No. LZ22E050002), the Science and Technology Innovation 2025 of Ningbo, China (No. 2022Z064, 2022Z009, 2022Z015 and 2023Z011) and the Scientific Research Foundation of Graduate School of Ningbo University (No. IF2023023).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 31 lipca 2023
Abstrakty: angielski
An accurate constitutive model is imperative to describe the deformation behavior of aluminum alloy in numerical simulation of thermal plastic forming process. In this study, isothermal uniaxial compressions of 2A12-T4 aluminum alloy were conducted by Gleeble-3500 thermal-mechanical simulator under the temperature of 300–450 °C and strain rate of 0.01–10 s−1. Three different Arrhenius constitutive models, including strain compensation (SC), genetic algorithm (GA) and K-function modification (KM), were established basing on the double correction of the true stress–strain curve by considering the effect of temperature variation and interfacial friction. The prediction accuracy of three models were assessed by the correlation coefficient (R), average absolute relative error (AARE) and the logarithm of the mean square error (ln (MSE)). The results show that the newly KM constitutive model considering the coupling effect of temperature and strain rate showed excellent agreement with the experimental data and best prediction capability with lowest error. Hot processing map based on the Murty-Rao criterion shows that high temperature and low strain rate is suitable for stable forming. In order to verify the reliability of the proposed model in numerical simulation, the established KM Arrhenius constitutive equation is secondarily developed in DEFORM 3D software and used in the hot compression process under the stable forming conditions obtained from hot processing map. The simulated force–displacement curves and maximum load values under forming conditions were well match with the experiment trends, which proved the reliability of the KM constitutive equation in the finite element numerical simulation.