Online Education vs Traditional Education: Analysis of Student Performance in Computer Science using Shapley Additive Explanations
Artykuł w czasopiśmie
MNiSW
100
Lista 2023
Status: | |
Autorzy: | Charytanowicz Małgorzata |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 3 |
Wolumen/Tom: | 22 |
Strony: | 351 - 368 |
Impact Factor: | 2,1 |
Web of Science® Times Cited: | 1 |
Scopus® Cytowania: | 2 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 11 września 2023 |
Abstrakty: | angielski |
Nowadays, the rapid development of ICT has brought more flexible forms that push the boundaries of classic teaching methodology. This paper is an analysis of online teaching and learning forced by the COVID-19 pandemic, as compared with traditional education approaches. In this regard, we assessed the performance of students studying in the face-to-face, online and hybrid mode for an engineering degree in Computer Science at the Lublin University of Technology during the years 2019-2022. A total of 1827 final test scores were examined using machine learning models and the Shapley additive explanations method. The results show an average increase in performance on final tests scores for students using online and hybrid modes, but the difference did not exceed 10% of the point maximum. Moreover, the students' work had a much higher impact on the final test scores than did the study system and their profile features. |