A Real-Time Dynamic Gesture Variability Recognition Method Based on Convolutional Neural Networks
Artykuł w czasopiśmie
MNiSW
100
Lista 2023
Status: | |
Autorzy: | Amangeldy Nurzada, Miłosz Marek, Kudubayeva Saule, Kassymova Akmaral, Kalakova Gulsim, Zhetkenbay Lena |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 19 |
Wolumen/Tom: | 13 |
Strony: | 1 - 18 |
Impact Factor: | 2,5 |
Web of Science® Times Cited: | 0 |
Scopus® Cytowania: | 2 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | The APC was funded by the Lublin University of Technology Scientific Fund FD-20/IT-3/007. |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 28 września 2023 |
Abstrakty: | angielski |
Among the many problems in machine learning, the most critical ones involve improving the categorical response prediction rate based on extracted features. In spite of this, it is noted that most of the time from the entire cycle of multi-class machine modeling for sign language recognition tasks is spent on data preparation, including collection, filtering, analysis, and visualization of data. To find the optimal solution for the above-mentioned problem, this paper proposes a methodology for automatically collecting the spatiotemporal features of gestures by calculating the coordinates of the found area of the pose and hand, normalizing them, and constructing an optimal multilayer perceptron for multiclass classification. By extracting and analyzing spatiotemporal data, the proposed method makes it possible to identify not only static features, but also the spatial (for gestures that touch the face and head) and dynamic features of gestures, which leads to an increase in the accuracy of gesture recognition. This classification was also carried out according to the form of the gesture demonstration to optimally extract the characteristics of gestures (display ability of all connection points), which also led to an increase in the accuracy of gesture recognition for certain classes to the value of 0.96. This method was tested using the well-known Ankara University Turkish Sign Language Dataset and the Dataset for Argentinian Sign Language to validate the experiment, which proved effective with a recognition accuracy of 0.98. |