Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2023
Status:
Autorzy: Kęcik Krzysztof, Stężycka Ewelina
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 13
Wolumen/Tom: 13
Numer artykułu: 7613
Strony: 1 - 16
Impact Factor: 2,5
Web of Science® Times Cited: 6
Scopus® Cytowania: 6
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This research was financed in the framework of the project: “Theoretical-experimental analysis possibility of electromechanical coupling shaping in energy harvesting systems” no. DEC-2019/35/B/ST8/01068, funded by the National Science Centre, Poland.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 27 czerwca 2023
Abstrakty: angielski
Energy harvesting is a useful technique for various kinds of self-powered electronic devices and systems as well as Internet of Things technology. This study presents a two-degrees-of-freedom (2DOF) electromagnetic energy harvester that can use environment vibration and provide energy for small electronic devices. The proposed harvester consists of a cylindrical tube with two moving magnets suspended by a magnetic spring mechanism and a stationary coil. In order to verify the theoretical model, a prototype electromagnetic harvester was constructed and tested. The influence of key parameters, including excitation acceleration, response to a harmonic frequency sweep, and electromechanical coupling on the generated characteristics of the harvester, was investigated. The experimental and theoretical results showed that the proposed electromagnetic energy harvester was able to increase the resonance bandwidth (60–1200 rad/s) and output power (0.2 W). However, due to strong nonlinearity, an unstable region occurred near the main first resonance, which resulted from the Neimark–Sacker bifurcation.