Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
The article presents the dynamic estimation method of the path loss exponent parameter in the function of the
distance based on the conducted measurements. A specific feature of this solution is its suitability for distance
estimation on devices which are characterised by a small amount of resources. The presented method allows to
provide an acceptable precision of distance estimation while using a relatively small measurement set. For this
purpose, real RSSI (Received Signal Strength Indicator) measurements were used and estimation of the path-loss
exponent was performed with the use of a Bayesian particle filter. The article, apart from a detailed demonstration
of the algorithms, presents the results of the sensitivity analysis of this method to change the number of inserted
particles and of the repetitions of calculations needed to estimate the path loss exponent. Additionally, the results
of the model stability study on the size change of the experimental dataset RSSI are presented. The properties and
accuracy of the proposed method are verified based on a set of actual measurement data. All the obtained results
indicate the utility of the Bayesian filtering method for effective estimation of the path loss exponent and confirm
the possibility of using the described method in systems with a limited amount of computing resources