Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2023
Status:
Autorzy: Bojanowska Agnieszka, Kulisz Monika
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 5
Wolumen/Tom: 17
Strony: 269 - 279
Impact Factor: 1,0
Web of Science® Times Cited: 1
Scopus® Cytowania: 3
Bazy: Web of Science | Scopus | EBSCOhost DOAJ – Directory of Open Access Journals IC Journals Master List J-Gate | Google Scholar | BazTech | PBN – Polska Bibliografia Naukowa
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 23 października 2023
Abstrakty: angielski
The purpose of the article is to propose a fuzzy logic solution for decision-making based on data from CRM (Customer Relationship Management) systems to evaluate banking customer attractiveness. The article is based on theory about management IT systems, especially the CRM type. Based on the literature research, nine identified factors were proposed that can influence whether the relationship with the customer will be profitable for the bank. Factors that affect banking customer attractiveness are considered, including the share of the customer's wallet and the customer's tendency to express a positive opinion of the bank. Data allowing for the identification of these factors is collected in the bank's IT systems, among other CRMs. Based on the research, a model prepared in Simulink using a Mamdani-type Fuzzy Inference System was made. It is a decision model that provides a result in the form of a binary value of 0 or 1, where 1 means it is worth investing in a customer, while 0 means it is not. After considering the subjective opinions, competence and experience of specialists and confronting them with the results from the developed model, it can be confirmed that the model works as expected.