Detection and identification of cylinder misfire in small aircraft engine in different operating conditions by linear and non-linear properties of frequency components
Artykuł w czasopiśmie
MNiSW
200
Lista 2023
Status: | |
Autorzy: | Syta Arkadiusz, Czarnigowski Jacek, Jakliński Piotr, Marwan Norbert |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Wolumen/Tom: | 223 |
Numer artykułu: | 113763 |
Strony: | 1 - 9 |
Impact Factor: | 5,2 |
Web of Science® Times Cited: | 1 |
Scopus® Cytowania: | 1 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 3 listopada 2023 |
Abstrakty: | angielski |
We suggest an approach for detecting and identifying ignition failure on a internal combustion engine used in aviation through the analysis of vibration time series. The research is carried out at the experimental stage, where time series of vibrations are collected from sensors installed in various parts of the facility at various rotational speeds and various operating conditions (no failure/failure of a selected piston). The time series were decomposed into periodic components centered around dominant frequencies. Data with greater dimensionality was statistically described using linear and non-linear indicators in short time windows, and labeled accordingly. Instead of examining the statistical significance of the characteristics of individual groups, machine learning classification methods were used, which allowed to distinguish the operating state of the engine (damaged/undamaged), and also to identify a specific unfired cylinder. The use of non-linear indicators allowed us to obtain 100% classification accuracy with a small number of samples. |