Polarization Influence on Algorithms of TFBG Sensors Data Analysis for Bending Application
Artykuł w czasopiśmie
MNiSW
100
Lista 2023
Status: | |
Autorzy: | Cięszczyk Sławomir, Harasim Damian |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 21 |
Wolumen/Tom: | 13 |
Strony: | 1 - 13 |
Impact Factor: | 2,5 |
Web of Science® Times Cited: | 0 |
Scopus® Cytowania: | 0 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | This work was supported by the Lublin University of Technology (grant number: FD-20/EE-2/301). |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 26 października 2023 |
Abstrakty: | angielski |
In this article we deal with the influence of polarization on determining the bending radius in TFBG (tilted fiber Bragg grating) sensors. The spectrum of TFBG structures changes under the influence of many factors at the same time. In the case of bending radius measurements, additional factors may be the temperature and polarization state of the introduced light. So far, only the cladding mode envelope algorithm has been used to determine the bending radius. An interesting issue seems to be establishing the influence of cross-sensitivity of the spectrum on changes in polarization during bending measurements. In addition to the envelope algorithm, algorithms for spectral length and average deviation from the local mean were examined. As a result of the analysis of experimental data, it was found that the level of polarization’s influence on the result may be significant in determining the bending radius. Reducing the influence of polarization can be achieved by using algorithms providing wavelength parameters. Additionally, in order to reduce the influence of polarization, we proposed the use of the PLS (partial least squares regression) algorithm for the processed spectrum. |