Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2023
Status:
Autorzy: Zhunissova Ulzhalgas M., Dzierżak Róża, Omiotek Zbigniew, Lytvynenko Volodymyr I.
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 21
Wolumen/Tom: 12
Numer artykułu: 6912
Strony: 1 - 24
Impact Factor: 3,0
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This research was funded by the Ministry of Education and Science—Poland, grant number FD-20/EE-2/302 and FD-20/EE-2/315.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 3 listopada 2023
Abstrakty: angielski
The aim of the study was to develop a computerized method for distinguishing COVID-19- affected cases from cases of pneumonia. This task continues to be a real challenge in the practice of diagnosing COVID-19 disease. In the study, a new approach was proposed, using a comprehensive set of diagnostic information (CSDI) including, among other things, medical history, demographic data, signs and symptoms of the disease, and laboratory results. These data have the advantage of being much more reliable compared with data based on a single source of information, such as radiological imaging. On this basis, a comprehensive process of building predictive models was carried out, including such steps as data preprocessing, feature selection, training, and evaluation of classification models. During the study, 9 different methods for feature selection were used, while the grid search method and 12 popular classification algorithms were employed to build classification models. The most effective model achieved a classification accuracy (ACC) of 85%, a sensitivity (TPR) equal to 83%, and a specificity (TNR) of 88%. The model was built using the random forest method with 15 features selected using the recursive feature elimination selection method. The results provide an opportunity to build a computer system to assist the physician in the diagnosis of the COVID-19 disease.