Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2023
Status:
Autorzy: Polak Wiesław
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 6
Wolumen/Tom: 17
Strony: 388 - 393
Impact Factor: 1,0
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus | BazTech
Efekt badań statutowych NIE
Finansowanie: This research was financed under the framework of the project Lublin University of Technology - Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 23 listopada 2023
Abstrakty: angielski
Movement of liquid iron micrometeoroid in the Earth atmosphere is simulated to find the time-dependence of its acceleration, velocity and coordinates as well as the length of luminous trajectory when the micrometeoroid is still melted. In the simulations it is assumed that the maximum size of the stable droplet is determined by aerodynamic fragmentation of the moving droplet occurring when the Weber number exceeds its critical value. Two different initial altitudes h of droplet formation were analysed: 80 km and 50 km, both for a wide range of initial velocities between 6 and 20 km/s. Depending on their initial velocity, exceeding the Earth’s escape velocity equal 11.2 km/s, the maximum radius of solid spherules, emerging from solidified final droplet, is predicted here to lie between (a) 55 and 100 μm for h = 80 km, and (b) 10 and 30 μm for h = 50 km.