Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2023
Status:
Autorzy: Stępień Łukasz, Łagodowski Zbigniew
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 20
Wolumen/Tom: 16
Numer artykułu: 7117
Strony: 1 - 19
Impact Factor: 3,0
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This research was funded by Lublin University of Technology, grant numbers FN-17, FD-20/IT-3/011 and FD-20/IT-3/030. The APC was funded by Lublin University of Technology.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 17 października 2023
Abstrakty: angielski
In this work, a new method for constructing the infinite-dimensional Ornstein–Uhlenbeck stochastic process is introduced. The constructed process is used to perturb the harmonic system in order to model anomalously fast heat transport in one-dimensional nanomaterials. The introduced method made it possible to obtain a transition probability function that allows for a different approach to the analysis of equations with such a disturbance. This creates the opportunity to relax assumptions about temporal correlations for such a process, which may lead to a qualitatively different model of energy transport through vibrations of the crystal lattice and, as a result, to obtain the superdiffusion equation on a macroscopic scale with an order of the fractional Laplacian different from the value of 3/4 obtained so far in stochastic models. Simulations confirming these predictions are presented and discussed.