Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Yang Liping, Ji Shuaizhuang, Niu Wenqing, Zare Ali, Hunicz Jacek, Brown Richard J.
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Elektroniczna
Język: angielski
Wolumen/Tom: 362
Numer artykułu: 130930
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
Reactivity controlled compression ignition (RCCI) combustion is a advanced low temperature combustion concept to reduce CO2 and brake the trade-off between NOx and PM emissions for next generation compression ignition (CI) engines. However, it leads to the more complex multi-stage heat release in diesel/natural gas (NG) dual fuel engines and is criticized for extra-high methane and carbon monoxide emissions. Using the existing methods, it is difficult to effectively quantify the contribution of the accumulated heat release (AHR) at each stage to the whole combustion process and to create their relevance to the performance and emissions in the RCCI engines. In this paper, experiments were conducted on a ship diesel/NG dual-fuel engine at a load of 25 %. A new identification and quantitative analysis method of multi-stage heat release is proposed, and the coupling effects of the diesel split injection parameters on the multi-stage heat release and performance in the RCCI engine were revealed. The results show that the new method is not only available for analyzing the combustion of traditional CI engines but also is more effective for identifying the multi-stage combustion in RCCI engines. For the increased pre-injection ratio (PR), as the start of first injection (SOI-I) and the start of second injection (SOI-II) advance, the AHR in Stage-I (Q-Stage-I) decreases, and the increased Q-Stage-III lead to the improved indicated thermal efficiency (ITE > 49 %). Meanwhile, methane (CH4), non-methane hydrocarbon (NMHC) and carbon monoxide (CO) emissions can be reduced by more than 50 %, while nitrogen oxides (NOx) emissions increase. The impact significance of SOI-II on Q-Stage-I and Q-Stage-III is higher, their values are + 65.88 % and −51.04 %, respectively, and the Q-Stage-II is mainly controlled by SOI-I. The impact significance of Q-Stage-III on ITE is the highest about + 69.43 %. Q-Stage-I shows a higher positive correlation with CH4, NMHC and CO emissions although the proportion of Q-Stage-I is far smaller than that of Q-Stage-II and Q-Stage-III. Therefore, the simultaneous reduction of incomplete combustion products and NOx emission can be achieved by reasonably adjusting split injection parameters.