Minimizing Intersection Waiting Time: Proposal of a Queue Network Model Using Kendall’s Notation in Panama City
Artykuł w czasopiśmie
MNiSW
100
Lista 2023
Status: | |
Autorzy: | Rovetto Carlos, Cruz Edmanuel, Núñez Ivonne, Santana Keyla, Smolarz Andrzej, Rangel José, Cano Elia Esther, Cano Elia Esther |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 18 |
Wolumen/Tom: | 13 |
Numer artykułu: | 10030 |
Strony: | 1 - 21 |
Impact Factor: | 2,5 |
Web of Science® Times Cited: | 1 |
Scopus® Cytowania: | 2 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 6 września 2023 |
Abstrakty: | angielski |
The paper presents a proposed queuing model based on Kendall’s notation for the inter- section of two streets in Panama City (53 East and 56 East). The proposed model is based on a set of traffic lights that controls the flow of vehicles at the intersection according to a predetermined schedule. The model analyzes the stability of the system and simulations are performed to evaluate its performance. The main objective of the paper is to optimize the vehicle flow by minimizing the waiting time for passage. In the study, it was observed that the current traffic light system on Calle 50 (50th Street) is unstable and oversaturated during weekdays, which generates large vehicle queues with no estimated exit times. It was proposed to increase the system capacity to 1300 vehicles per hour to achieve reasonable stability and provide a solution to improve traffic signal timing on 50th Street. The need to increase the system capacity has been demonstrated and an optimal value has been suggested. The evaluation of other models and the use of AI can further strengthen the system and improve the prediction accuracy in different traffic scenarios. |