Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2024
Status:
Autorzy: Velychko Diana, Osukhivska Halyna, Palaniza Yuri, Lutsyk Nadiia, Sobaszek Łukasz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 2
Wolumen/Tom: 18
Strony: 296 - 304
Impact Factor: 1,0
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 14 marca 2023
Abstrakty: angielski
The use of Artificial Intelligence is currently being observed in many areas of life. In addition to assisting in intellectual work, solving complex computational problems, or analyzing various types of data, the aforementioned techniques can also be applied in the process of providing security to people. The paper proposes an emergency identification system based on Artificial Intelligence that aims to provide timely detection and notification of dangerous situations. The proposed solution consider the position of a person "hands up" as an emergency situation that will indicate a potential danger for a person. Because people in the face of potential danger are mostly forced to raise their hands up and this pose attracts attention, emphasizes the emotional reaction to certain events and is usually used as a sign of risk or as a means of subjugation. The system should recognize the pose of a person, detect it, and consequently inform about the threat. In this paper, an AI based emergency identification system was proposed to detect the human pose "hands up" for emergency identification using the PoseNet Machine Learning Model. The assumption consists that the utilization only of 6 key points made allows reducing the computing resources of the system since the conclusion is made taking into account a smaller amount of data. For the study, a dataset of 1510 images was created for training an Artificial Intelligence model, and the decisions were verified. Supervised Machine Learning methods are used to classify the definition of an emergency. Alternative methods: Support Vector Machine, Logistic Regression, Naïve Bayes Classifier, Discriminant Analysis Classifier, and K-nearest Neighbours Classifier based on the accuracy were evaluated. Overall, the paper presents a comprehensive and innovative approach to emergency identification for quick response to them using the proposed system.