Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
200
Lista 2024
Status:
Autorzy: Szeląg Bartosz, Majerek Dariusz, Eusebii Anna Laura, Kiczko Adam, De Paola Francesco, McGarity Arthur, Wałek Grzegorz, Fatone Francesco
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 355
Numer artykułu: 120214
Impact Factor: 8,0
Web of Science® Times Cited: 5
Scopus® Cytowania: 7
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
Specific flood volume is an important criterion for evaluating the performance of sewer networks. Currently, mechanistic models - MCMs (e.g., SWMM) are usually used for its prediction, but they require the collection of detailed information about the characteristics of the catchment and sewer network, which can be difficult to obtain, and the process of model calibration is a complex task. This paper presents a methodology for developing simulators to predict specific flood volume using machine learning methods (DNN - Deep Neural Network, GAM - Generalized Additive Model). The results of Sobol index calculations using the GSA method were used to select the ML model as an alternative to the MCM model. It was shown that the DNN model can be used for flood prediction, for which high agreement was obtained between the results of GSA calculations for rainfall data, catchment and sewer network characteristics, and calibrated SWMM parameters describing land use and sewer retention. Regression relationships (polynomials and exponential functions) were determined between Sobol indices (retention depth of impervious area, correction factor of impervious area, Manning's roughness coefficient of sewers) and sewer network characteristics (unit density of sewers, retention factor - the downstream and upstream of retention ratio) obtaining R2 = 0. 55–0.78. The feasibility of predicting sewer network flooding and modernization with the DNN model using a limited range of input data compared to the SWMM was shown. The developed model can be applied to the management of urban catchments with limited access to data and at the stage of urban planning.