Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Status:
Autorzy: Weremczuk Andrzej, Rusinek Rafał
Rok wydania: 2024
URL do źródła LINK
Język: angielski
Źródło: 60. Sympozjon "Modelowanie w mechanice"
Miasto wystąpienia: Wisła
Państwo wystąpienia: POLSKA
Efekt badań statutowych NIE
Abstrakty: angielski
Modern research into channel flow requires advanced imaging technologies, enabling accurate understanding of three-dimensional flow dynamics. The authors present an innovative application of Optical Coherence Tomography (OCT) in the context of creating 3D flow structures which can be helpful in modeling in mechanics, particularly in studying and imaging 3D flow structures in a channel. OCT is a non-invasive imaging technique based on interferometry, offering micrometer depth resolution and high-speed recording of images. Using optical light, such as that generated by a superluminescent diode (SLD) or a narrow-line spectrum broadband laser, OCT allows for non-invasive examination of flow structure. In the presented research, the authors focused on analyzing 3D flow structures in a channel. Utilizing OCT’s ability to generate A-scans, B-scans, and C-scans, they present a more comprehensive analysis of the dynamics of two and multiphase flows under various conditions (flow rates, fluid mixtures, bubble interaction etc.). An important aspect of the study is the ability to dynamically monitor changes in real time. Thanks to OCT, it is possible to obtain images in milliseconds, allowing for a fuller analysis of changes in flow structure under different operational conditions. With help of such an approach it is possible to achieve realistic three-dimensional reconstructions of complex multiphase flow structures. These advancements enable the precise determination of phase separation fronts, the measurement of velocities of various structures throughout the channel, and the assessment of sedimentation rates of suspended particles in the fluid. This knowledge significantly enhances the accuracy of numerical modeling, leading to more precise simulations. The implications of these findings are substantial for engineering, industrial diagnostics, and medicine, opening new avenues in these disciplines.