Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Podulka Przemysław, Kulisz Monika, Antosz Katarzyna
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 7
Wolumen/Tom: 17
Numer artykułu: 1456
Strony: 1 - 19
Impact Factor: 3,1
Web of Science® Times Cited: 1
Scopus® Cytowania: 1
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 22 marca 2024
Abstrakty: angielski
Manufacturing processes in industry applications are often controlled by the evaluation of surface topography. Topography, in its overall performance, includes form, waviness, and roughness. Methods of measurement of surface roughness can be roughly divided into tactile and contactless techniques. The latter ones are much faster but sensitive to external disturbances from the environment. One type of external source error, while the measurement of surface topography occurs, is a high-frequency noise. This noise originates from the vibration of the measuring system. In this study, the methods for reducing high-frequency errors from the results of contactless roughness measurements of turned surfaces were supported by machine learning methods. This research delves into optimizing filtration methods for surface topography measurements through the application of machine learning models, focusing on enhancing the accuracy of surface roughness assessments. By examining turned surfaces under specific machining conditions and employing a variety of digital filters, the study identifies the Gaussian regression filter and spline filter as the most effective methods at a 22.5 µm cut-off. Utilizing neural networks, support vector machines, and decision trees, the research demonstrates the superior performance of SVMs, achieving remarkable accuracy and sensitivity in predicting optimal filtration methods.