Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2024
Status:
Autorzy: Litak Grzegorz, Kondratiuk Mirosław, Wolszczak Piotr, Ambrożkiewicz Bartłomiej, Giri Abhijeet M.
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 8
Wolumen/Tom: 14
Numer artykułu: 3265
Strony: 1 - 15
Efekt badań statutowych NIE
Finansowanie: Supported by the National Science Centre, Poland under the project SHENG-2 (Grant No. 2021/40/Q/ST8/00362).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 12 kwietnia 2024
Abstrakty: angielski
The proposed energy harvesting system is based on a rotational pendulum-like electromagnetic device. Pendulum energy harvesting systems can be used to generate power for wearable devices such as smart watches and fitness trackers, by harnessing the energy from the human body motion. These systems can also be used to power low-energy-consuming sensors and monitoring devices in industrial settings where consistent ambient vibrations are present, enabling continuous operation without any need for frequent battery replacements. The pendulum-based energy harvester presented in this work was equipped with additional adjustable permanent magnets placed inside the induction coils, governing the movement of the pendulum. This research pioneers a novel electromagnetic energy harvester design that offers customizable potential configurations. Such a design was realized using the 3D printing method for enhanced precision, and analyzed using the finite element method (FEM). The reduced dynamic model was derived for a real-size device and FEM-based simulations were carried out to estimate the distribution and interaction of the magnetic field. Dynamic simulations were performed for the selected magnet configurations of the system. Power output analyses are presented for systems with and without the additional magnets inside the coils. The primary outcome of this research demonstrates the importance of optimization of geometric configuration. Such an optimization was exercised here by strategically choosing the size and positioning of the magnets, which significantly enhanced energy harvesting performance by facilitating easier passage of the pendulum through magnetic barriers.