Vortex excitation model. Part I. Mathematical description and numerical implementation
Artykuł w czasopiśmie
MNiSW
25
Lista A
Status: | |
Autorzy: | Lipecki Tomasz, Flaga Andrzej |
Rok wydania: | 2013 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 5 |
Wolumen/Tom: | 16 |
Strony: | 457 - 476 |
Impact Factor: | 0,905 |
Web of Science® Times Cited: | 7 |
Scopus® Cytowania: | 7 |
Bazy: | Web of Science | Scopus | Science Citation Index Expanded (SciSearch) | SCOPUS | ISI Alerting Services | Current Contents/Engineering | Computing & Technology | ANBAR | International Civil Engineering Abstracts | ProQuest | Metals Abstracts | Engineering Index | COMPENDEX PLUS | Applied Mechanics Reviews | Shock and Vibration Digest |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | NIE |
Abstrakty: | angielski |
This paper presents theoretical background for a semi-empirical, mathematical model of critical vortex excitation of slender structures of compact cross-sections. The model can be applied to slender tower-like structures (chimneys, towers), and to slender elements of structures (masts, pylons, cables). Many empirical formulas describing across-wind load at vortex excitation depending on several flow parameters, Reynolds number range, structure geometry and lock-in phenomenon can be found in literature. The aim of this paper is to demonstrate mathematical background of the vortex excitation model for a theoretical case of the structure section. Extrapolation of the mathematical model for the application to real structures is also presented. Considerations are devoted to various cases of wind flow (steady and unsteady), ranges of Reynolds number and lateral vibrations of structures or their absence. Numerical implementation of the model with application to real structures is also proposed. |