Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Ma XiaoQing, Chen Gantong, Li Zhiyuan, Litak Grzegorz, Zhou ShengXi
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 112
Strony: 10937 - 10958
Impact Factor: 5,2
Web of Science® Times Cited: 1
Scopus® Cytowania: 2
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This work was supported by the National Key R&D Program of China (Grant No. 2022YFB2603200), the National Natural Science Foundation of China (Grant No. 52161135106), the Fundamental Research Funds for the Central Universities (Granted No. D5000230099), the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant No. CX2022001). GL was supported by the National Science centre, Poland under the project SHENG-2, No. 2021/40/Q/ST8/00362
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
To improve the energy harvesting performance of flow-induced vibration energy harvesters, this paper proposes the design of the nonlinear multistable wake-galloping energy harvester. The corresponding lumped-parameter model is established to use for theoretical analysis. The homoclinic and heteroclinic orbits of nonlinear bistable and tristable wake-galloping energy harvesters are theoretically calculated by using the Padé approximation method providing a foundation for the applying of the Melnikov method. Finally, the threshold value of chaotic motions for the harvester is calculated by using the Melnikov method, and the results are verified by numerical simulations. Overall, this study provides a foundation for theoretically prediction of the chaotic motion of nonlinear flow-induced vibration energy harvesters, and provides guidance for the structural design.